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Experiments on 4He films reveal an attractive Casimir-like force at the bulk � point and in the superfluid
regime. Previous work has explained the magnitude of this force at the � transition and deep in the superfluid
region but not the substantial attractive force immediately below the � point. Utilizing a simple mean-field
calculation renormalized by critical fluctuations we obtain an effective Casimir force that is qualitatively
consistent with the scaling function � obtained by collapse of experimental data.
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Experiments by Garcia and Chan �1� have challenged our
understanding of finite size behavior in thin films of 4He
close to the � point. The experiments monitor the thickness
of a wetting film of helium suspended above a 4He bath.
Near and below the bulk transition temperature the film be-
comes thinner. Since the microscopic intermolecular interac-
tions are not expected to be modified at the � temperature,
the thinning can only be due to collective behavior at and
below the transition. Indeed, the reduced thickness has been
interpreted as due to an attractive, fluctuation-induced,
Casimir-like force. Subsequent results by Ganshin et al. �2�
confirm that this force is consistent with finite size scaling,
according to which �3,4�, for a slab of width L, the effective
force per unit area f�T ,L�, acting to thicken or thin the film,
has the general form

f�T,L� =
kBTc

Ld ��tL1/�� . �1�

Here, t= �T−Tc� /Tc is the reduced temperature, measuring
the distance from the bulk critical point Tc, � is the dimen-
sionless amplitude of the scaling function, and � is the cor-
relation length exponent. Figure 1 shows the experimental
data for the dependence of the function ��x� on the scaling
combination x= tL1/�, as presented in Ref. �2� �see also Fig. 3
in that paper�. This plot combines the results from 4He films
of three different initial thicknesses of 238, 285, and 340 Å.
It is important to note that these films are in equilibrium with
the bulk helium liquid.

As shown in the figure, the force amplitudes extracted
from the data associated with the three films collapse onto a
single curve, in clear vindication of finite size scaling. The
behavior of the scaling function at and immediately above
the � transition is well described by the two-loop renormal-
ization group calculations of Krech and Dietrich �6–9�. An-
other feature that is successfully explained by theory is the
finite negative value of � well below the critical point: it was
demonstrated in Ref. �10� that a combination of phase fluc-
tuations within the film and surface deformations can ac-
count for this value.

However, the most prominent feature in Fig. 1 is the deep
minimum of the scaling function in the vicinity of

x � tL1/� = − 9.7 ± 0.8 Å1/�. �2�

The amplitude of the force at this minimum is roughly an
order of magnitude larger than that of the Casimir forces at
�x=0� and far below �x→−� � the transition and has thus far
not been reproduced by any theoretical calculation. In par-
ticular, the dip is considerably larger than the one in the
simulations reported by Dantchev and Krech �11�, or the low
temperature vortex loop calculations of Williams �12–14�.

In this Rapid Communication, we show that the origin of
the large attractive Casimir-like force measured in Refs. �1,2�
is twofold. First, the boundary conditions that apply in the
case of a superfluid film are Dirichlet in that the superfluid
order parameter effectively vanishes at the substrate and at
the liquid-vapor interface. This distinguishes the wetting film
from the periodic systems considered in Refs. �11–13�. Sec-
ond, because the film is in equilibrium with a reservoir of
bulk fluid, it is necessary to take into account the free energy
of the bulk in calculating the effective force, f , acting on the
film. This leads to the following scenario on cooling the
system: Immediately below the � temperature, ordering in
the form of a nonzero superfluid order parameter takes place
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FIG. 1. The Casimir force amplitude � for 4He films of three
different thicknesses L, as a function of the scaling variable x
= tL1/�, from the data by Ganshin et al. �2,5�. Despite the differences
in film thickness, the scaled forces collapse onto a single curve with
a minimum at x=−9.7±0.8 Å1/�.
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in the bulk reservoir of 4He. However, boundary effects sup-
press the appearance of superfluid ordering, even at a local
level, in the film. To take advantage of the lower free energy
of the superfluid state, helium atoms move from the film to
the ordered bulk, leading to additional film thinning, and a
corresponding increase in the attractive effective Casimir-
like force. Upon further reduction of temperature, local or-
dering finally occurs in the film; its free energy lowers, re-
sulting in a rebound of the film thickness.

Both of these contributing factors are well displayed in a
simple mean-field treatment augmented by the renormalizing
effects of critical fluctuations at the onset of order in the
bulk. Calculations based on this approach indicate that the
minimum of the scaling function occurs, approximately,
when the dimensionless quantity y= �L /��1/�, where � is the
correlation length, is at ymin=−�2=−9.87. The experimental
value of ymin is equal to −7.4±0.6, as is obtained by setting
t= ��0 /��1/� in Eq. �2�, with �0=1.2 Å �15,16�. We note at the
outset that the mean-field calculation, details of which fol-
low, yields a minimum amplitude that is significantly greater
than the observed value. We are optimistic that a proper
treatment which correctly accounts for the effects of
fluctuations—and for the fact that the superfluid order pa-
rameter should be modeled by a two-component vector—
will lead to a substantial reduction in the force. However, it
is clear that any proper theoretical model will have to em-
body the elements underlying the results reported here.

The simplest depiction of the superfluid transition in a
thin film geometry is based on the Ginzburg-Pitaevskii
Hamiltonian �17�, which follows from the Ginzburg-Landau
model �18�. In one dimension �moving through the film� the
effective Hamiltonian is

H = �
0

L �1

2
�d	�z�

dz
	2

+
r

2
	�z�2 + u	�z�4
dz , �3�

where 	�z� is the order parameter, r is the reduced tempera-
ture, and u is the fourth order coupling constant, which quan-
tifies the system’s self-interaction and provides the mecha-
nism by which ordering saturates.

The extremum �saddle point or mean field� equation sat-
isfied by the order parameter is

0 =

H


	�z�
= −

d2	�z�
dz2 + r	�z� + 4u	�z�3.

We assume Dirichlet boundary conditions, 	�0�=	�L�=0, at
both sides of the film consistent with the experimental situ-
ation. For the bulk �L→ � �, or in a periodic and hence ho-
mogeneous system, a nonzero solution appears as soon as
−r�0. For the film, it is easy to see that a nonzero solution
appears only for −r��0, where �0=�2 /L2 is the smallest �in
magnitude� eigenvalue of the Laplacian with Dirichlet
boundary conditions.

By quadratures, the full solution to this equation is

1

2
�d	�z�

dz
	2

= −
r

2
„	0

2 − 	�z�2
… + u„	�z�4 − 	0

4
… , �4�

where we have obtained Eq. �4� from Eq. �3� by exploiting
the mathematical equivalence between the first version of the
equation of state and Newton’s second law for the motion of
a particle in a one-dimensional potential. Equation �4� is the
statement of conservation of energy in this context.

In accord with the boundary conditions and obvious sym-
metry considerations, we set 	��L /2�=0 and thus 	�L /2�
=	0. Integrating dz /d	 in Eq. �4� from the edge of the film
to its midpoint gives �19�

L

2
= �

0

	0 d	

�− r�	0
2 − 	2��1 + �2u/r��	0

2 + 	2��

=
1

�− r

K� �

1 − �
	

�1 − �
, �5�

where K is the elliptic integral of the first kind and

� =
2u	0

2

− r
. �6�

To obtain the effective force, we calculate the derivative
of the free energy in Eq. �3� with respect to L, after replacing
	�z� with its extremum value. After a series of relatively
straightforward steps, we end up with the following result for
the L-derivative of the free energy:

�F
�L

= − �1

2
�d	�z�

dz
	2�

z=L
+

r

2
	�L�2 + u	�L�4. �7�

Finally, making use of the Dirichlet boundary conditions, and
Eq. �4�, we have for the derivative of the free energy with
respect to the thickness of the system,

�F
�L

=
r

2
	0

2 + u	0
4. �8�

We note that Eq. �5� allows us to write � as a function of the
combination �−rL /2. Setting r=y /L2 and making use of Eq.
�6�, the derivative of the free energy with respect to L takes
the form

�F
�L

= −
1

4uL4 y2���− y/2��1 − ���− y/2�� . �9�

Except for the quantity u and the prefactor of 1 /L4, which is
appropriate to a four-dimensional system �and is consistent
with the fact that mean-field theory agrees with four-
dimensional hyperscaling�, we have a free energy derivative
that depends on the scaling variable y. Within mean-field
theory, the quantity u is material-dependent. However, the
existence of a stable renormalization group fixed point on the
critical hypersurface implies a universal value for this coef-
ficient �20�.

An important feature of the experiments in Refs. �1,2� is
that the wetting film is in equilibrium with vapor, which is in
turn in equilibrium with the bulk �albeit at a lower height�.
Thus to determine the layer thickness we should calculate the
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change in free energy as some fluid is removed from the film
and simultaneously added to the bulk. The mean-field calcu-
lation of the bulk free energy is straightforward, obtained
from the previous result in the limit of L→�. The resulting
expression for the force is

f =
1

4uL4 y2���− y/2��1 − ���− y/2�� −
1

16uL4 y2. �10�

Figure 2 displays the above mean-field scaling function,
��y�= fL4 /kBTc, as a function of y=rL2= �L /��2, where � is
the correlation length as expressed before. Also shown in the
figure is the data in Fig. 1. Note that in Fig. 1 the scaling
function is plotted vs x, which has units of Å1/�, while in Fig.
2 the horizontal axis represents the dimensionless quantity
y= �L /��1/�. The amplitude of the mean-field function de-
pends on the parameter u and has been adjusted to give the
observed amplitude at the minimum. Note that at this coarse
resolution, the mean-field curve captures the main trends of
the experimental data below the critical temperature. The
most significant discrepancy is that the measured force does
not go to zero for y→−�; this is due to the absence of
Goldstone and surface modes in the mean-field analysis �10�.

To obtain the correct scaling of the force f with the film
thickness L, we utilize a version of mean-field theory that
takes into account the renormalizing effects of critical fluc-
tuations �see Ref. �21��. The relevant free energy density,
after renormalizing to cell blocks larger by a factor b=el*, is

e−l*d r�l*�
2

	�l*�2 + u�l*�	�l*�4� . �11�

Close to a fixed point of the renormalization group, the vari-
ous quantities in the above equation scale as �21� r�l*�
=rel*/�, u�l*�=u*, and 	�l*�=	e�d−2+��l*/2. To account for the
finite thickness of the wetting films, we choose a rescaling
factor el* =L, at which point the Landau-Ginzburg parameters
are r�l*�=rL1/� and u�l*��u*. Ignoring fluctuations at scales
larger than �and equal to� L is then equivalent to carrying out
the previous mean-field calculations with the above rescaled
parameters �and with L�=1�. Any free energy density �and
hence effective force� in this approximation is thus obtained
from its mean-field form as

f ren�r,u,L� =
1

Ld fmean field„�L/��1/�,u*,1… . �12�

In particular, from Eq. �10�, the effective force for −�2y
0 becomes

fbulk = −
�L/��1/�

16u*Ld . �13�

The above mean-field approach with renormalized param-
eters also fixes the vertical scale in Fig. 2, removing the
unknown value of u. This is because, in units where kBTc
=1, the fourth order coupling constant u* has a specific value
within the renormalization group, and is computed to high
precision in Ref. �22�. Making use of the values provided
there �23�, one finds u*=0.88. Using Eq. �13�, the minimum
of the scaling function at ymin=−�2 is estimated as

�min = −
1

0.88

��2�2

16
= − 6.92, �14�

which is roughly five times larger than the experimentally
measured value.

The mean-field calculation suffers from a number of other
shortcomings. We already noted that the force is asymptoti-
cally zero for y→−� due to the neglect of phase and capil-
lary fluctuations �10�. It also yields a zero critical Casimir
force for all y�0, while there is a small finite value to this
quantity in experiments due to order parameter fluctuations,
as calculated at one- and two-loop level in Ref. �8�. As a first
correction to the mean-field result the Casimir force can be
estimated by including quadratic �i.e., one-loop� fluctuations
around the saddle point. At exactly y=0, the fluctuations are
massless and lead �in three dimensions� to a Casimir ampli-
tude of �8,24�

��0� � −
1

2�
�

0

�

dqq2�coth q − 1� = − 0.095 656 6.

�15�

We note that the ratio of the extremum value of ��−�2� �a
mean-field result� to its one-loop magnitude at y=0 is around
70. This is to be contrasted with ratios from experimental
data that range from 20 to approximately 35 �the variation of
possible ratios arises from the different values of ��0� that
can be inferred from experimental data�.

Another feature of the mean-field result is the discontinu-
ous slope of the scaling function at its minimum in Fig. 2.
This is a consequence of the onset, in the mean-field approxi-
mation, of an actual transition accompanied by long-range
order in the film at y=−�2. Foremost, even within the mean-
field approximations there is no reason to expect that the
point of maximum thinning coincides exactly with the onset
of the ordering in the layer. Calculations involving lower
dimensional models for the “bulk” and “film” �e.g., two-
dimensional Ising bulk and a one-dimensional Ising film or
one-dimensional bulk and zero-dimensional film� yield be-
havior that is qualitatively similar to the mean-field picture
notwithstanding that a transition within the film is precluded
�24�. In these cases—as may well be the case in the experi-
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FIG. 2. �Color online� The mean-field scaling function ��y�
derived from Eq. �10� �dashed curve�, compared to the replotted
experimental data from Fig. 1. The horizontal axis is dimensionless
and provides a check of the approximations, while the vertical axis
is adjusted so that the minima occur at the same point.
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mental setups of �1,2�—the free energy of the film begins to
decrease due to the formation of local pockets of order. In the
absence of a genuine transition in the film there is no singu-
larity at the minimum. In the actual films, the onset of super-
fluidity �which should occur at a different temperature alto-
gether� will be of the two-dimensional XY universality class
�25,26�. These details are certainly not taken into account in
our treatment and, arguably, are not relevant for the current
level of experimental resolution.

Indeed, let us reemphasize that the essence of our deriva-
tion is thermodynamic: outside a narrow “critical window”
thermodynamic signatures of ordering �whether ultimately
short or long-ranged� should be accurately described by a
Landau theory. A phenomenological calculation of the thin-
ning effect may be performed on this basis using standard
mean-field approximation. The predicted thinning of the film
is consistent with the experimental results �24�.

In summary, we find that a mean-field calculation yields
results for the scaling form of the Casimir force in 4He films
that are in qualitative agreement with recent experimental
observations. While discrepancies remain to be resolved, we
are confident that this approach captures the important ther-
modynamic signatures, and therefore the effective thinning
force in 4He films at the onset of bulk superfluidity. Note that

while theoretical studies of films with Dirichlet boundary
conditions have been performed since the 1970s �27,28� and,
furthermore, discussed in connection with helium films �29�,
their relevance to the experiments of Garcia and Chan had
not been pointed out. Similar mean-field analysis and discus-
sion of the order parameter profile appears in many contexts,
for example, in Ref. �30�.

Work on improved mean-field approaches and the proper
evaluation of the effects of fluctuations in all temperature
regimes is ongoing. An understanding of the underlying prin-
ciples behind the thinning of helium films is expected to
have important implications in the analysis of other wetting
experiments �31,32�.
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